Gloria#

Constructor#

Gloria(*args[, model, sampling_period, ...])

The Gloria forecaster object is the central hub for the entire modeling workflow.

Attributes#

Gloria.is_fitted

Determines whether the present Gloria model is fitted.

Methods#

Gloria.add_event(name, regressor_type, profile)

Adds an event to the Gloria object.

Gloria.add_external_regressor(name, prior_scale)

Add an external regressor to the Gloria object.

Gloria.add_protocol(protocol)

Add a protocol to the Gloria object.

Gloria.add_seasonality(name, period, ...[, ...])

Adds a seasonality to the Gloria object.

Gloria.fit(data[, toml_path])

Fits the Gloria object.

Gloria.from_dict(model_dict)

Restores a fitted Gloria model from a dictionary.

Gloria.from_json(model_json[, return_as])

Restores a fitted Gloria model from a json string or file.

Gloria.from_toml(toml_path[, ignore])

Instantiate and configure a Gloria object from a TOML configuration file.

Gloria.load_data([toml_path])

Load and configure the time-series input data for fit method.

Gloria.make_future_dataframe([periods, ...])

Build a timestamp skeleton that extends the training horizon.

Gloria.plot(fcst[, ax, uncertainty, ...])

Plot the forecast, trend, and observed data with extensive customization options.

Gloria.plot_components(fcst[, uncertainty, ...])

Plot forecast components of a Gloria model using a modern Seaborn style, with global kwargs applied to all subplots.

Gloria.predict([data, toml_path])

Generate forecasts from a fitted Gloria model.

Gloria.to_dict()

Converts Gloria object to a dictionary of JSON serializable types.

Gloria.to_json([filepath])

Converts Gloria object to a JSON string.